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Abstract
We propose a max-plus equation which reproduces evolutional patterns often
observed in reaction–diffusion systems of excitable media. The equation gives
a travelling wave, a target pattern and a spiral pattern from appropriate initial
data. Moreover, using the advantages of max-plus equations, we obtain the
solutions exactly by a reduction from the high-dimensional equation to a lower
one. In the reduction, we use coordinate curves according to a pattern shape.
It is interesting that all patterns satisfy the same reduced equation. We also
propose two other models similar to the previous one and discuss the behaviour
of solutions.

PACS numbers: 45.70.Qj, 05.45.-a, 47.54.+r

1. Introduction

Max-plus algebra is constructed from max operation as ‘addition’ and addition as
‘multiplication’ [1]. The following shows the correspondence between the usual real number
operations and max-plus operations:

a + b ↔ max(A,B),

ab ↔ A + B,

a/b ↔ A − B,

a + (b + c) = (a + b) + c ↔ max(A,max(B,C)) = max(max(A,B), C)

= max(A,B,C),

a(bc) = (ab)c ↔ A + (B + C) = (A + B) + C,

a(b + c) = ab + ac ↔ A + max(B,C) = max(A + B,A + C).

Since ‘subtraction’ (a − b) is not defined in max-plus algebra without a special condition,
we cannot automatically transform an equation and its solutions including four arithmetic
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operations into those including max-plus operations. However, various ‘integrable’ max-plus
equations were found by taking an ultradiscrete limit of integrable difference equations using
the following formulae [2–5]:

lim
ε→+0

ε log(eA/ε + eB/ε + · · ·) = max(A,B, . . .)

( lim
ε→+0

)ε log(eA/εeB/ε . . .) = A + B + · · · . (1)

Difference special solutions like N -soliton solutions can also be transformed into max-plus
ones. Though max-plus solutions can be derived from the corresponding difference ones, we
can confirm that they satisfy the equation by a direct substitution using max-plus operations.

Another feature of the max-plus equation is the discreteness of its dependent variable. Let
us consider the ultradiscrete Burgers equation [6]

Ut+1
j = Ut

j−1 + max(1, U t
j + Ut

j+1) − max(1, U t
j−1 + Ut

j )

as an example. (It can be ‘linearized’ using an ultradiscrete Cole–Hopf transformation
Ut

j = F t
j+1 − F t

j + 1/2 and we obtain F t+1
j = max(F t

j−1, F
t
j+1).) We can consider that

the dependent variable U is continuous, but if the initial values are all integers, U are always
integer. In this sense, max-plus algebra can propose equations with all discrete variables.
Moreover, we can easily show any U is always 0 or 1 if the initial U values are also. It means
the above equation can become a cellular automaton (CA) [7].

Considering the above features of max-plus equations, we arrive at the following question:
‘How many mechanisms in continuous mathematics survive in max-plus algebra?’ Note that
integrability is not necessary for max-plus operations. In this paper, we make max-plus models
of a pattern formation mechanism, which give evolutional patterns often observed in reaction–
diffusion systems of excitable media.

Reaction–diffusion systems show us a rich structure of pattern dynamics [8]. For example,
in the Belouzov–Zhabotinsky (BZ) chemical reaction, two-dimensional ring-shaped reaction
waves are repeatedly produced from a core area and they propagate outward as concentric
circles [9]. This pattern is called a ‘target’ pattern. Moreover, a single- or a double-‘spiral’
pattern often appears. It turns around a core and its outer part propagates outward. The target
and the spiral patterns are commonly observed in various reaction–diffusion systems. The
systems are often modelled using two kinds of material, activator and inhibitor, in the form of
a couple of differential equations. Numerical simulations of the model equations can reproduce
the pattern dynamics well.

Moreover, various CA models have been made to simulate the dynamics [10–17]. They
are discrete analogues to pattern formation systems and their results match the phenomena
well. Due to the discreteness of CA models, we can obtain exact solutions even by numerical
simulations. The local behaviour of solutions can be easily checked by analysing an evolution
rule of the models. These are advantages of CA models. However, it is often difficult to discuss
global or asymptotic properties of solutions in the CA models. On the other hand, we have
accumulated many techniques to evaluate such properties for differential models. Our main
purpose in this paper is to propose max-plus models including the advantages of both the CA
and differential models. In the max-plus models, we can give exact solutions like those to CA
models and can also show global behaviour of the solutions using similar techniques to those
of differential models.

In section 2, we propose a (2 + 1)D max-plus model and show that it has various solutions
including target and spiral patterns. In section 3, we show that basic solutions to the model can
be derived from a lower-dimensional equation obtained by a reduction using some coordinate
curves. The travelling wave, target pattern and spiral pattern are all derived from solutions
to the same 1D equation reduced by corresponding curves. In section 4, we show two other
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Figure 1. Travelling waves. A dot denotes 0.

Figure 2. Single-ring pattern.

models obtained by a small modification of the original one. Though the shape and behaviour
of the above basic solutions are slightly changed, they also exist stably in the models. In
section 5, we give concluding discussions.

2. (2 + 1)D max-plus model

In this paper, we consider the following (2 + 1)D max-plus equation:

Ut+1
ij = max(Ut

i−1j , U
t
i+1j , U

t
ij−1, U

t
ij+1, U

t
ij ) − Ut

ij − Ut−1
ij (2)

where i and j are both spatial lattices and t is the discrete time. We assume spatial lattices
are infinite (−∞ < i < ∞ and −∞ < j < ∞) and Ut

ij → 0 for |i|, |j | → ∞. Then we
can follow a time evolution of U if we set initial data at two successive timesteps. Moreover,
since (2) is symmetric on t , (2) is reversible in time.

Below we assume without loss of generality that t = 0 is an initial time for the initial
value problem of (2). If U 0

ij and U 1
ij are all integer valued, then Ut

ij is always an integer. In this
sense, we can consider the dependent variable U as well as independent variables i, j and t

are all discrete. Moreover, if U is a solution to (2), c U is also where c is a constant. Using this
property and considering piecewise linearity of (2), we easily see that an initial value problem
using integer values is equivalent to that using rational ones. Therefore, we can discuss the
behaviour of a wide range of solutions by investigating only integer solutions.

Figure 1 shows an example of a basic solution to (2). Values 1, 2 and 3 make vertical lines
respectively, with enough zeros between them, and initial data satisfy U 1

ij = U 0
i−1j . Then, a

solution obtained always satisfies Ut+1
ij = Ut

i−1j . Thus the non-zero lines become travelling
waves with speed (1, 0), not interacting with each other. If we set initial data at t = 1 by
U 1

ij = U 0
i+1j , then travelling waves with speed (−1, 0) are obtained. Generally, there are

waves travelling in directions (±1, 0) or (0,±1) from appropriate initial data.
Figure 2 shows a ‘single-ring’ pattern. U 0

ij and U 1
ij are all 0 except that U 1

ij at a certain
lattice point is 1. From that point, a diamond-shaped wave with value 1 spreads outward.

Figure 3 shows a process to form a stable ‘target’ pattern. At the centre point, the
value changes periodically as 1, 1, −1 and diamond-shaped waves appear and spread outward
repeatedly with period 3.
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Figure 3. Target pattern. ‘a’ denotes −1.

Figure 4. Spiral pattern.

Figure 4 shows a process to form a stable ‘spiral’ pattern. From an infinite line of value 1,
we obtain a simple travelling wave like those in figure 1. If we use a half-line instead, a spiral
appears from its end point. After an infinite time, the spiral spreads through the whole space
region and it rotates by 90◦ per unit time.

We can consider the above target and spiral patterns are discrete analogues to those
commonly observed in various reaction–diffusion systems. In the systems, the activator and
inhibitor play important roles in making patterns. For example, the BZ reaction system is often
modelled in the form

ut = Du�u + f (u, v)

vt = Dv�v + g(u, v)
(3)
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Figure 5. Time evolution of a solution to (5).

where Du and Dv are diffusion coefficients and f and g are reaction terms [8]. State variables
u(x, y, t) and v(x, y, t) are the ‘activator’ and ‘inhibitor’, respectively. Equation (3) is a
system of first-order differential equations in time. Du�u and Dv�v have a two-dimensional
diffusion effect and f and g have a reaction effect between u and v. On the other hand, (2) is a
single difference equation of second order in time. We can rewrite (2) as the following couple
of equations using an auxiliary variable V t

ij = Ut−1
ij ;

Ut+1
ij = max(Ut

i−1j , U
t
i+1j , U

t
ij−1, U

t
ij+1, U

t
ij ) − Ut

ij − V t
ij

V t+1
ij = Ut

ij .
(4)

Both equations are of first order in time. Since the max term in the first equation includes
von Neumann neighbourhoods of Ut

ij , information on a lattice point propagates to surrounding
ones. Let us consider the following equation:

Ut+1
ij = max(Ut

i−1j , U
t
i+1j , U

t
ij−1, U

t
ij+1, U

t
ij ) − Ut

ij (5)

which is made from the first equation of (4) by removing the last term in its right-hand side.
If we set U 0

ij = 0 other than U 0
00 = 1, then we obtain a time evolution as shown in figure 5.

We easily see from (5) that Ut+1
ij � 0 generally, and a localized positive value of U spreads

outward. In this rough meaning, U can be regarded as an activator.
The existence of V in the first equation of (4) means that U at the next time decreases if

a current V is positive. Moreover, though current V is 0, V grows if current U is positive,
according to the second equation. It means V plays the role of an inhibitor.

From the above discussion, we can consider that (4) is a rough sketch of the reaction–
diffusion system. However, the above arguments are only the bare minimum of the reaction–
diffusion system. They do not fully account for the occurrence of target and spiral patterns.
In the next section, we further discuss the reason why both patterns appear in (2).

3. Stable pattern and coordinate curves

When we derive a special solution to a high-dimensional differential equation, we often assume
a symmetry of solution and obtain a lower-dimensional differential equation. For example,
if we have a (2 + 1)D PDE on u(x, y, t) and assume an axisymmetric solution, we usually
assume u = v(r, t) with polar coordinate (r, θ), and reduce the (2 + 1)D PDE to (1 + 1)D.
Moreover, if we were to get a travelling wave solution for v(r, t), we assume v(r, t) = w(z)
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Figure 6. Example of a family of polygonal curves. Integers denote
labels of the curves.

where z = r − ct and obtain an ODE on z from the (1 + 1)D PDE. We can show below that a
similar procedure can be applied to (2) and all patterns in figures 1–4 satisfy the same ordinary
difference equation.

Let us consider a family of lines defined by i = const and label each line by its i-coordinate.
Moreover, if we assume that values of U 0

ij on the nth line are the same and that those of U 1
ij are

also, values of Ut
ij on the nth line are always the same according to (2). Then, if F t

n denotes
the same value of Ut

ij on the nth line at time t , F t
n satisfies the following equation:

F t+1
n = max(F t

n−1, F
t
n, F

t
n+1) − F t

n − F t−1
n (6)

because max(Ut
i−1j , U

t
i+1j , U

t
ij−1, U

t
ij+1, U

t
ij ) reduces to max(F t

n−1, F
t
n, F

t
n+1).

Moreover, if we consider a travelling wave solutionF t
n = Gn±t with speed ∓1, Gn satisfies

Gn−1 + Gn + Gn+1 = max(Gn−1,Gn,Gn+1) (7)

by a reduction of (6). This equation does not determine a solution uniquely from initial data.
To obtain a general solution to (7), let us consider the following equation for A, B and C:

A + B + C = max(A,B,C) (8)

where A � B � C. Since the value of the right-hand side is equal to C, A+B = 0 is derived.
Therefore, we obtain (A,B,C) = (−α, α, β) where 0 � α � β. Thus, if Gn−1, Gn and Gn+1

satisfy a local condition

{Gn−1,Gn,Gn+1} = {−α, α, β} (9)

for anyn, G becomes a solution to (7). Since a boundary condition onU is lim|i|,|j |→∞ Ut
ij = 0,

that for G is lim|n|→∞ Gn = 0. Therefore, a general solution to (7) considering the boundary
condition has a pattern of values as follows:

· · · 000p10 ∗ 0p20 ∗ 0p30 ∗ · · · · · · ∗ 0pm000 · · ·
where p1, p2, . . . , pm are all positive numbers and ∗ means nothing or some zeros. As for the
solution in figure 1, G = · · · 000100300002000 · · · .

Other travelling wave solutions to (2) can be obtained by other symmetries of a solution.
Consider a family of polygonal curves of infinite length reaching j → ±∞ as shown in
figure 6. All curves have the same shape and all vertices are on lattice points. Moreover, all
segments on a curve are any of (i, j)− (i −1, j + 1), (i, j)− (i, j + 1) or (i, j)− (i −1, j + 1).

Let us label the curves sequentially with integers as shown in the figure. If we assume
that all values of Ut

ij on each curve are the same, F t
n denoting the value of U on a

curve n at time t satisfies (6) because max(Ut
i−1j , U

t
i+1j , U

t
ij−1, U

t
ij+1, U

t
ij ) again reduces
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Figure 7. Family of diamond-shaped curves.

Figure 8. Evolution of F t
n. (a) Single ring, (b) target pattern.

to max(F t
n−1, F

t
n, F

t
n+1). Moreover, we can obtain a travelling wave solution F t

n = Gn±t

satisfying (7). Note that there are travelling wave solutions obtained by rotating the solutions
shown above by 90◦.

Surprisingly, single-ring (figure 2), target (figure 3) and spiral (figure 4) patterns obey the
same scenario as above. First, let us consider a family of diamond-shaped curves as shown in
figure 7 and give a sequential integer as a label to each diamond. The centre point is a special
diamond with zero area.

Consider an arbitrary lattice point (i, j) on the nth (n > 0) diamond. Then, lattice points
(i ± 1, j) and (i, j ± 1) are all on the (n − 1)th or (n + 1)th diamond and both diamonds
include at least one point among the points. Therefore, if we assume that values of Ut

ij on each
diamond are the same, F t

n denoting the value of U on the nth diamond at time t satisfies (6)
for n > 0. As for the centre point, a boundary condition

F t+1
0 = max(F t

0, F
t
1) − F t

0 − F t−1
0 (10)

is applied. Under this condition, the evolution pattern of F t
n for a single ring and a target

pattern are shown in figures 8(a) and (b), respectively. Only one wave is produced from the
point n = 0 in the case of (a) and an infinite number of waves are periodically produced in the
case of (b). Since a relation F t+1

n = F t
n−1 is satisfied for n � 1 in (a) and for n � 2 in (b), we

can consider that travelling waves are produced from a boundary condition on the point n = 0.
Secondly, let us consider a family of four spiral curves as shown in figure 9. They have

the same shape and cover all lattice points in the plane. Nearest-neighbouring points of any
point on a curve n are on a curve n − 1 or n + 1 modulo 4. Therefore, if we assume all U
on each curve are the same, (2) reduces to (6) through F t

n denoting a value of U on a curve
n at time t . The variable n of F t

n is periodic with period 4 or finite with modulus 4. Again
we can consider a travelling wave solution F t

n = Gn±t and it satisfies (7). Since there is a
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Figure 9. Four spiral curves.

restriction (9) for Gn, we obtain {G0,G1,G2,G3} = {0, 0, 0, α} where α > 0. We can easily
see that a completely developed spiral pattern obtained at t → ∞ in figure 4 satisfies (7) using
the four spiral curves and the reduction above. Note that we cannot explain the whole evolution
of the solution shown in figure 4 because the initial data do not satisfy the equality condition
of values on four spiral curves. We add a note that there is a reversely winding spiral obtained
from a mirror image of the above spiral curves.

There are many other evolutional patterns satisfying (7) with other families of curves and
the same reduction. Figure 10 shows such examples. If we assume all values are the same
on each curve for initial data, we can obtain a double-target pattern from figure 10(a) and a
double-spiral one from (b). We can easily see that some targets and/or spirals can coexist
like these examples and it is true for various reaction–diffusion systems. However, if we set
two cores of targets with value 1 and with value 2 apart from each other, their interaction is
complicated and the target pattern with value 2 often destroys that with 1 after enough time.

4. Other models

In the previous section, we have shown a symmetry of (2) makes stable patterns tracing
coordinate curves. However, this symmetry is not peculiar to (2) and there are other max-plus
models showing the patterns. For example, a model equation

Ut+1
ij = max(Ut

i−1j , U
t
i+1j , U

t
ij−1, U

t
ij+1, U

t
ij ) − Ut−1

ij (11)

also gives the travelling wave, target pattern, spiral pattern and their multiple patterns. The
difference from (2) is a lack of the term −Ut

ij in the right-hand side. This equation can be
reduced to

F t+1
n = max(F t

n−1, F
t
n, F

t
n+1) − F t−1

n (12)

using the same assumption as in the previous section. Since a travelling wave solution satisfies

Gn−1 + Gn+1 = max(Gn−1,Gn,Gn+1) (13)

its local value pattern is 0 b a or a b 0 where a � 0 and a � b, or a a + b b where a � 0 and
b � 0. It means that a local pattern 0 c 0 (c � 0) cannot be allowed and 0 c c 0 is possible.
Therefore the width of localized waves becomes wider. Figure 11 shows a periodic double-
spiral pattern with period 4. Note that coordinate curves are of the same type of those in
figure 10(b) and the width of spiral becomes wider than that in figure 4.
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Figure 10. Curves for (a) a double target, (b) a double spiral.

Another example of a model is the following:

Ut+1
ij = max(Ut

i−1j , U
t
i+1j , U

t
ij−1, U

t
ij+1, U

t
ij , U

t−1
ij ) − Ut−1

ij . (14)

An additional term Ut−1
ij is introduced into the max term of (11). Using coordinate curves,

this equation reduces to

F t+1
n = max(F t

n−1, F
t
n, F

t
n+1, F

t−1
n ) − F t−1

n

and travelling wave solutions satisfy the same equation as (13). Since the max term of (14)
includes Ut−1

ij , we derive Ut+1
ij � 0. Moreover, we easily see that Uij at time t + 1 cannot

exceed the maximum value among those at time t . Therefore, if 0 � U 0
ij � L and 0 � U 1

ij � L

where L is a positive integer, Ut
ij is also. Especially, if U 0

ij and U 1
ij are all 0 or L, Ut

ij is also.
In this sense, (14) constructs a CA depending on initial data. Since the solution to (11) shown
in figure 11 includes only 0 and 1, it also becomes a solution to (14).

Moreover, if all Ut
ij are always 0 or L (> 0) as described above, we can show the existence

of ‘tough’ cores of target and spiral patterns. In this case, if Ut−1
ij = 0 and Ut

ij = L, then
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Figure 11. Double-spiral pattern given by (11). It is also a solution to (14).

Figure 12. Core of the target pattern of (14). ∗ denotes 0 or L.

Figure 13. Core of the spiral pattern of (14).

Ut+1
ij = L, Ut+2

ij = 0 and Ut+3
ij = 0 are obtained from (14). Moreover, if Ut−1

ij = Ut
ij = 0

and at least one of Ut
i±1j and Ut

ij±1 is L, then Ut+1
ij = L is derived. Therefore, an evolution

of a local pattern shown in figure 12 is stable and periodic with period 4. This becomes the
core of the target pattern because the value L appears repeatedly at the centre point and its
copies propagate to neighbouring sites. Another tough core is shown in figure 13 and it is also
periodic with period 4. This is a core of spiral pattern and we can observe the same cores in
figure 11.

5. Concluding discussions

In this paper, we presented a max-plus model (2) showing a pattern formation mechanism. It
gives travelling waves, target patterns and spiral patterns. Target and spiral patterns are stable
as are multiple target or spiral patterns. The remarkable feature of the model is that we can
show such patterns by exact solutions using the reduction of the high-dimensional equation
to a lower dimension with coordinate curves, as we often do for high-dimensional differential
equations.

We also showed two other models (11) and (14) by removing or adding a few terms.
Despite the modification, target and spiral patterns survive and their solutions are derived by
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a similar reduction process. In the latter model, we showed it can construct a CA under a
restriction and the evolution of the core is not affected by surrounding sites. It is interesting
that similar types of equations give similar dynamics. This is generally true for the real
reaction–diffusion systems and their mathematical models.

Next, we give interesting future problems related to the above models. The first problem
is analysing a general dynamics from arbitrary initial data. We showed only specific patterns
from selected initial data made from two integer values. Our numerical simulations from more
general data suggest a complicated evolutional dynamics and sometimes a chaotic behaviour.
Note that our models give a stable basic pattern of an arbitrary value. If Ut

ij is a solution, then
c Ut

ij is also. On the other hand, a value of the uniform solution to known differential models
changes between two stable values periodically, and the bottom and top areas of a localized
wave take either of the values. We consider that this difference in the property of our models
from the differential models reflects the complex dynamics of our models. In this sense, the
physical interpretation of our models should be discussed.

Our models can propose a clear analysis on various characteristic patterns. Exact solutions
of the whole region including the core area are rarely obtained for differential systems. Our
models are fully discrete and it makes analysis easier. Though considering this advantage,
reduction of the equation with coordinate curves is a parallel procedure to those performed for
differential systems. Note that known CA models showing the patterns are usually described
by a Boolean operation or procedural words and such an analysis is rarely successful. We hope
a strong link exists between our models and differential systems utilizing the above features
of our models, such as integrable max-plus equations.

We make two remarks below in order to suggest this link. First, consider a finite difference
equation

gn−1gngn+1 = gn−1 + gn + gn+1. (15)

If we use a transformation gn = eGn/ε and take a limit ε → +0, we get (7) using
formulae (1). Moreover, (15) reduces to θn−1 + θn + θn+1 = knπ where gn = tan θn
and kn is an arbitrary integer depending on n. One of the solutions to this equation is
θn : · · · π

4 ,
π
4 + δ, π

2 − δ, π
4 ,

π
4 + δ, π

2 − δ, · · ·. If we use δ = e−1/ε and take a limit ε → +0,
we obtain Gn : · · · 0 0 1 0 0 1 · · · . This is a solution to (7). Though we cannot give a general
solution of Gn from (15), we can consider (15) is a suggestive example to show a relationship
between continuous and discrete models.

Secondly, consider the following difference equation:

ut+1
ij + ut

ij + ut−1
ij = log[α(eut

i+1j + eut
i−1j + eut

ij+1 + eut
ij−1) + βeut

ij ] (16)

where α and β are positive constants. If we use a transformation ut
ij = Ut

ij /ε and take an
ultradiscrete limit ε → +0, we obtain (2) directly. Moreover, if we assume ut

ij = v(hi, hj, ht)

and h ∼ 0, we obtain

vtt ∼ α

4α + β
(�v + |∇v|2) +

1

h2
(log(4α + β) − 2v). (17)

When we use initial data of ut
ij corresponding to Ut

ij with finite ε and calculate a time evolution
of (16) numerically, we can observe patterns described in the previous sections if ε is small
enough. However, the patterns do not survive eternally and they disappear after a long time.
When ε is not small (ε ∼ 1), the patterns disappear more quickly. Moreover, we cannot
observe the patterns surviving for a long time in the numerical calculations of (17).

Equation (16) is not a unique equation reducing to (2) and we can make many other
examples. Therefore, it is an important future problem to find a difference and differential
equations which are directly related to (2) through ultradiscretization and give a similar pattern
mechanism.
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